On the Switch Markov Chain for Perfect Matchings
نویسندگان
چکیده
منابع مشابه
Counting perfect matchings and the switch chain
We examine the problem of exactly or approximately counting all perfect matchings in hereditary classes of nonbipartite graphs. In particular, we consider the switch Markov chain of Diaconis, Graham and Holmes. We determine the largest hereditary class for which the chain is ergodic, and define a large new hereditary class of graphs for which it is rapidly mixing. We go on to show that the chai...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملPerfect Matchings and Perfect Powers
In the last decade there have been many results about special families of graphs whose number of perfect matchings is given by perfect or near perfect powers (N. Elkies et al., J. Algebraic Combin. 1 (1992), 111– 132; B.-Y. Yang, Ph.D. thesis, Department of Mathematics, MIT, Cambridge, MA, 1991; J. Propp, New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999). In this pa...
متن کاملPerfect Matchings and Perfect Squares
In 1961, P.W. Kasteleyn enumerated the domino tilings of a 2n × 2n chessboard. His answer was always a square or double a square (we call such a number "squarish"), but he did not provide a combinatorial explanation for this. In the present thesis, we prove by mostly combinatorial arguments that the number of matchings of a large class of graphs with 4-fold rotational symmetry is squarish; our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the ACM
سال: 2017
ISSN: 0004-5411,1557-735X
DOI: 10.1145/2822322